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The present study provides a detailed description of the dissipative structure of 
shock waves propagating in dense gases which have relatively large specific heats. 
The flows of interest are governed by the usual NavierStokes equations 
supplemented by realistic equations of state and realistic models for the density 
dependence of the viscosity and thermal conductivity. New results include the first 
computation of the structure of finite-amplitude expansion shocks and examples of 
shock waves in which the thickness increases, rather than decreases, with strength. 
A new phenomenon, referred to as impending shock splitting, is also reported. 

1. Introduction 
The most common representation of a shock wave is as a discontinuity propagating 

in an inviscid fluid. However, it is well known that the actual transition between the 
upstream and downstream states is continuous, the smoothing agent being a 
combination of heat transfer and viscous effects. A reasonable qualitative picture of 
the details of the flow within the shock layer is given by Taylor’s (1910) structure for 
weak shocks propagating in perfect gases. More recent studies have shown that many 
of the features of compressible flow are contingent on the sign of the thermodynamic 
parameter 

Here p is the fluid density, a = a(p,  s) is the thermodynamic sound speed, s is the fluid 
entropy, V = p-l is the specific volume, p is the thermodynamic pressure, and r is 
commonly referred to as the fundamental derivative of gasdynamics. I n  flows having 
r < 0, compression shocks violate the entropy inequality and the only shocks 
possible are expansion or rarefaction shocks; see e.g. Zel’dovich (1946) or the more 
recent discussion of Thompson (1971). We refer to this case as that of negative 
nonlinearity and that where r > 0 as positive nonlinearity. 

The conditions under which r becomes negative were first given by Bethe (1942) 
and Zel’dovich (1946) who recognized that fluids with relatively large specific heats 
will possess a region of negative nonlinearity in the general vicinity of the saturated- 
vapour line at temperatures and pressures approaching the critical values. This 
region is depicted in figure 1 for the case of a van der Waals gas with a constant 
specific heat. This region of negative nonlinearity is necessarily bounded. After all, 
all gases behave like ideal gases in the limit of small density (large V) .  In  the ideal- 
gas limit 
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FIGURE 1. Constant r= pT/a contours for a van der Waals gas with c, = 50R = constant. The 

subscript c denotes conditions at the thermodynamic critical point. 
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where y > 1 is the ratio of specific heats; thus, r must ultimately become positive as 
the density decreases. Lambrakis & Thompson (1972) and Thompson & Lambrakis 
(1973) have extended the work of Bethe and Zel’dovich by employing more 
sophisticated equations of state. Their work has provided examples of commercially 
available hydrocarbons and fluorocarbons which have a similar region of negative 
nonlinearity. In the following we shall refer to fluids that have a region of negative 
nonlinearity similar to that seen in figure 1 as Bethe-Zel’dovich-Thompson (BZT) 
fluids in recognition of the early contributions of these authors. Inspection of figure 1 
shows that disturbances of sufficiently large amplitude may result in both positive 
and negative nonlinearity in the same disturbances i.e. r m a y  change sign at various 
points in the flow field. Such cases are referred to as mixed nonlinearity and may 
result in phenomena not observed in either the r > 0 or the r < 0 theory. Examples 
include the formation and propagation of compression and expansion shocks in the 
same disturbance, collisions between expansion and compression shocks of the same 
family, the partial disintegration of both compression and expansion shocks into 
shock-fan combinations, the existence of sonic shocks and shock splitting. By sonic 
shocks we mean shocks having speed identically equal to the convected sound speed 
immediately before or after the shock. In a frame moving with a sonic shock the 
Mach number is unity on the sonic side of the shock. In steady flows, a sonic oblique 
shock has Mach lines parallel to the shock on the sonic side. Double sonic shocks are 
shocks that carry a non-zero pressure jump but that  have sonic conditions on both 
sides of the shock. Details of these inviscid phenomena have been given by 
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Thompson & Lambrakis (1973), Cramer & Kluwick (1984), Cramer & Sen (1987), and 
Cramer (19894 ; recent summaries have been provided by Cramer (1987 b, 1989~).  
Previous investigations of the dissipative structure of shock waves in BZT fluids are, 
for the most part, based on the weak-shock theory of Cramer & Kluwick (1984) 
although the role of the structure in the context of the existence of finite-amplitude 
shocks has been delineated by Menikoff & Plohr (1989) and Cramer (1989a, c). 

New features revealed by Cramer & Kluwick (1984) and Cramer (1987~)  are as 
follows. (i) The density, temperature and pressurc approach the inviscid conditions 
on the sonic side of a sonic shock algebraically rathe; than exponentially. (ii) The 
local Mach number has a maximum or minimum at  points where the local value of 
r changes sign. (iii) All expansion shocks correspond to an entropy deficit. That is, 
s (x)  < sl, where s1 is the entropy upstream of the shock, over most of the shock layer 
although the entropy difference ultimately becomes positive as the downstream 
conditions are approached. 

Remarks similar to (i) have been made by Lee-Bapty & Crighton (1987) in their 
discussion of a cubic Burgers equation and by Cramer & Sen (1990) in the context of 
temperature shocks in superfluid helium. This slow algebraic approach tends to 
thicken the shock. When the sonic shock is the skock of maximum, rather than 
minimum, strength the thickening leads to an increase in thickness with strength as 
the sonic condition is approached. This contrasts sharply with the Taylor structure 
in which the thickness decreases monotonically with strength. Result (ii) also clearly 
contrasts with the perfect gas theory where r is strictly positive at every point in the 
flow. It is well known that the Mach number decreases monotonically from 
supersonic conditions to subsonic conditions if the gas is perfect. The significance of 
(iii) is seen when it is recalled that the local value of the entropy in a compression 
shock is always greater than the upstream value a t  every point in the shock laycr. 
Thus, in a perfect gas, the entropy attains a local maximum, rather than minimum, 
at some point in the interior of a compression shock. I 

The principal goal of the present study is to provide detailed descriptions of the 
dissipative structure of finite-strength shocks in BZT fluids, thus extending and 
verifying the predictions of the Cramer-Kluwick weak-shock theory. We have also 
discovered a class of solutions which have no counterpart in either the weak-shock 
theory of Cramer & Kluwick (1984) or Taylor’s (1910) classical theory. These 
solutions resemble an internal splitting of an admissible shock and reveal the 
physical mechanisms leading to the inviscid shock splitting described by Cramer 
(1989~)  and Menikoff & Plohr (1989). 

Our general approach is to  consider single-phase Navier-Stokes fluids governed by 
the usual continuum shock structure model ; this is described in the following section. 
A posteriori checks on the thickness, presented in $4, indicate that the continuum 
model is indeed justified. Realistic models are employed for the pressure, thermal 
conductivity and viscosities; these are described in $3. I n  order to provide a 
theoretical background for the new features revealed by our numerical calculations, 
we have presented an extension of the weak-shock theory of Cramer & Kluwick in 
$5 .  This theory is seen to  be in reasonable qualitative agreement with all phenomena 
found in the numerical calculations. 

2. Structure model and method of solution 
The standard continuum model for the dissipative structure of a shock wave takes 

the flow to be one-dimensional, steady, single-phase, and free from all body forces. 
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Under these conditions, the Navier-Stokes-Fourier equations may be reduced 
to 

where V( =p- l )  and T are the specific volume and the absolute temperature. The 
functions p = p (  V ,  T ) ,  e = e ( V ,  T ) ,  y = y(V,  T ) ,  k = k ( V ,  T ) ,  y, = pb(V,  T )  are the 
thermodynamic pressure, internal energy, shear viscosity, thermal conductivity, and 
bulk viscosity, respectively. The quantity 

(2 .2)  

where v (x )  is the local flow speed, is referred to as the mass flux. The subscripts 1 and 
2 denote conditions on either side of the shock. Because V = p- l ,  we may relate v to 
V through the mass flux m as follows: 

m = up = v lp ,  = v2p2 = constant, 

m 

P 
v = - = m V .  

The specific volume and temperature are required to approach constants as x + f co, 
i.e. 

V,T+Vl,T,  as x+--co, 
V,T+V, ,T ,  as x + m .  (2.3) 

At the asymptotes (2 .3) ,  we have 

F(K, T,) = 0, Q(K, T,) = 0, (2.4) 

where i = 1 , 2 .  It can be verified that the combination of (2 .2)  and (2 .4)  are 
equivalent to the Rankine-Hugoniot conditions for a normal stationary shock in 
inviscid flow. With respect to solutions to the autonomous system (2 .1) ,  the solutions 
to (2 .4)  are seen to be singular points in the (T ,  V )  phase plane; the desired solution 
is the integral of (2 .1)  which goes through the two singular points (V,, q) and (V,, T!). 
Our approach to the solution to (2.1)-(2.3) is to recast the problem as an initial-value 
problem. In order to avoid the well-known numerical instabilities associated with the 
saddle point a t  the downstream asymptote, we begin the integration in the vicinity 
of this singular point. We choose the initial value of V to satisfy 

Knit = v,, 
where Vnit is our initial value of V.  The initial temperature is then approximated by 
using the slope of the correct solution curve as follows: 

%it = T,+c(Vni t -V , ) ,  

c = G -Fv L-[(-) Fv-G,  + FTG,-FvGTr 
2FT 2FT F% 

, 

where FT, F,, G,, G ,  are the partial derivatives of F and G evaluated a t  condition 2. 
Even though small errors are introduced by this approximation, all solutions 
neighbouring the correct one enter the node a t  Q,Tl and a reasonably accurate 
solution is guaranteed. 
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FIGURE 2. Shock adiabets for PP11. The adiabets for values of 5? < 1 intersect the satura_ted 
vapour line at T = TT,. The adiabats for values of T 2 1 go through the point V = 1.356, T = TT,. 

In the perfect-gas theory, all properties of a normal stationary shock can be 
determined by specifying the upstream conditions and, as a measure of strength, the 
upstream flow Mach number. Although it is rarely done, it is also possible to use a 
downstream thermodynamic variable to specify the strength. In our calculations, we 
use the latter and, in particular, the shock strength will be fixed by specifying the 
downstream value of the specific volume. The downstream temperature can then be 
computed by iterating the Hugoniot equation : 

which is recognized as the jump condition expressing the principle of energy 
conservation. Here square brackets denote the jump in the indicated quantity, i.e. 
[A]  = A,-A, ,  where A is any quantity. Solut,ions to (2.5) plotted in the ( p ,  V ) -  
diagram are normally referred to as the shock adiabat. Shock adiabats for perfluoro- 
perhydrophenanthrene, referred to hereinafter as by its trade name PP11, have been 
computed by this technique and are plotted in figure 2 .  Once T, is determined from 
(2 .5) ,  the downstream pressure and all other thermodynamic variables may be 
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determined through use of the equation of state. The upstream and downstream 
Mach numbers may then be determined by the well-known relation 

(2.6) 

which is obtained by combining the mass and momentum jump conditions (2.2) and 
(2.4). Here M = v/a is the Mach number. It should also be noted that the mass 
equation ( 2 . 2 )  requires that 

M u  
v m = vp = - = constant. 

Thus, from (2.6) we have the expression for the local Mach number at any point 
inside the shock laver : 

M ( x )  =-  -- 3 :)i 
To determine whether the shock is admissible we use the criterion given by Cramer 
(1989a) and Menikoff & Plohr (1989). This states that the shock is an admissible 
compression shock if and only if the Rayleigh linc connecting the upstream and 
downstream states lies entirely above the shock adiabat between the upstream and 
downstream states. The term Rayleigh line refers to  any straight line in the ( p ,  V ) -  
diagram. I n  like manner, the proposed discontinuity is an admissible expansion 
shock if and only if the Rayleigh line lies entirely below the adiabat. This existence 
condition is recognized as an extension of Lax’s generalized entropy admissibility 
conditions, see e.g. Lax (1971). A similar result in the context of weak shocks with 
mixed nonlinearity has been given by Lee-Bapty & Crighton (1987). 

3. Gas models 
The equation of state used here can be written in general form as 

where R is the gas constant and b is a constant typically measuring the excluded 
volume. The functions &(V)  and Q,(T) will be specified later and a prime is used to 
denote differentiation with respect to the pertinent variables. The entropy and 
internal energy corresponding to (3.1) are 

N 

e = e , + $ +  {F,(TQ;)-F:(T*&;*-&:)}, 
i-1 

where 

where cum is the ideal-gas specific heat, i.e. 

c,, = c,,(T) = lim cv( I/, 7’). 
V’, 
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Fluid 

C,,F,, pf-perhydrofluorme 632 16.0 0.283 463 0.787 78.4 0.53 

C,,F,, pf-prrhydrophenan 650 14.4 0.269 488 0.777 97.3 0.58 

C',,F,,R' pf-trihexylamine 646 9.3 0.275 526 0.97 145.0 0.43 

TABLE 1 .  Fluids used in this study. Details of the estimation of the critical properties, boiling 
temperature and specific heat have been given by Cramer (1989b). In each case, the acentric factor 
w was computed from the manufacturer's saturation data. 

(PPl0) 

threne (PP11) 

(FC-7 1 ) 

The asterisk subscript or supercript denotes a reference value which is usually 
evaluated at a specified temperature and a pressure of one atmosphere. In  each case 
presented here we have taken T* to be the critical temperature. The sound speed may 
be computed from 

T 
(3.3) )" a(V ,  T, = -(PT)*-pV 7 

{% 

where the actual specific heat is given by 

(3.4) 

The subscripts T and V algain denote partial derivatives which may be computed 
from (3.1) once the functions 4 and Qi are specified. To compute the fundamental 
derivative from (3.1) we recast ( 1 . 1 )  in terms OfpT, p,, p,,, p,,, PTT, c,, and ac,/aT; 
the explicit form may be found in Bethe (1942), Lambrakis & Thompson (1972) or 
Cramer (1989b). 

The equation of state chosen for the present calculations is that of Martin & Hou 
(1955) with the high-density correction found in the footnote on page 148 of that 
article. Thus, the functions Fi will comprise inverse integral powers of V -  b and the 
Qi functions will be of the form 

Qi = T+qyexp (-5.475T/T,), 

where q;+l, qi+l, qykl are constants computed as indicated in the article by Martin & 
Hou. 

The Martin-Hou equation has a strong analytical basis and therefore requires a 
minimum number of input data. Furthermore, the work of Thompson & Lambrakis 
(1973) and Cramer (19896) indicates that  i t  is conservative with respect to 
predictions of negative nonlinearity. The required input parameters are the molecular 
weight, critical temperature, pressure and specific volume (T,, p,, V,) and the normal 
boiling tcmpcrature ( Tb). 

The numerical values of p,, T,, and Tb for the fluids employed here are listed in 
table 1.  The critical specific volume and molecular weight were used to  compute the 
critical compressibility Z ,  E p ,  VJRT,. Most of the parameters shown were either 
taken directly from the manufacturer's information (ISC Chemicals Ltd., Bristol, 
England for PPlO and PP11 and 3M Corporation, Minneapolis, Minnesota for FC-71) 
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or estimated by standard techniques. Details of the estimation techniques are 
described by Cramcr (1989b). 

For a complete specification of the thermodynamic state we also require the ideal 
gas specific heat (3.2). For the present purposes it was adequate to model this by the 
power law 

(3.5) 

where n is a constant, c,*, is thc ideal gas specific heat evaluated at the reference 
temperature T*. As in Cramer (1989 b ) ,  both n and c,*, were estimated by the group 
contribution method of Rihani & Doraiswany (1965). 

The shear viscosity and thermal conductivity were computed by the method of 
Chung. Ajlan, Lce & Starling as described in Reid, Prausnitz & Poling (1987, chap. 
9-10). Each fluid considered was regarded as non-polar so that the dipole moment 
and association factors were ignored. In addition to those already introduced the 
only other factor required for the application of these formulae is the eccentric factor 

0 3 -log,, (p,( T = 0 . 7 T , ) / p C )  - 1 ,  

where p,(T) is the saturation pressure. For the fluids listed in table 1, sufficient 
saturation data was provided in the manufacturer’s product information to facilitate 
computation of w .  

Finally, the bulk viscosity must be specified. Data and analytic formulae for the 
bulk viscosity are scarce under the simplest conditions and are nonexistent for the 
heavy fluorocarbons considered in the present study. As a result, we have assumed 
that the ratio pJp is a constant. Again, owing to the lack of data, we choose 
numerical values for this ratio rather arbitrarily. However, several numerical tests 
and the analysis of $ 5  indicate that different choices will not make significant 
changes in thc qualitative nature of the structure. 

4. Results 
In  each of the cases described in this section, we have plotted scaled versions of the 

specific volume, entropy and the Mach numbcr versus the scaled distance xlL. The 
lengthscale L is defined 

where p* is the shear viscosity computed at the reference state. Thus, the length 
scaling is fixed for each Auid and no rescaling based on the shock strength is required. 
For purposes of comparison we have also shifted all profiles so that 

x = O  when V=t(V,+V,) .  

The first example is a series of expansion shocks in PP10. The upstream state was 
taken to bc 

V, = 1.75VC, TI = 0.99TC, p ,  = 0.9194p,, q p l / a ,  = -0.298. 

At this temperature, the saturation pressure is estimated to be 0 . 9 2 4 ~ ~ ;  thus, the 
upstream state is just  to  the right of the saturated-vapour curve in the (p ,V)-  
diagram. The variations of the non-dimensional specific volume, entropy and Mach 
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1.95 0.8896 0.9876 -0.1633 1.014 0.989 0.72 1837 
2.15 0.8589 0.9855 -0.0222 1.023 0.988 3.93 1289 
2.35 0.8279 0.9836 0.1002 1.027 0.995 7.63 1360 

TABLE 2. Numerical data for the expansion shocks of figures 3-5. Fluid is PPlO with 
V, = 1.75Vc, TI = 0.99Tc, p, = 0.9194pC, p lc /a ,  = -0.298, and pb/p = 0.5. 

v- v, 
v 2 -  v, 

0.1 

-2 .5  -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 
- ( x 10-3) 
L 

FIGURE 3. Variation of specific volume ws. 5 for three expansion shocks in PP10. Numerical 
data are given in table 2. 

number through the shock layer are given in figures 3-5. The downstream conditions, 
Mach numbers and scaled thickness are listed in table 2. Throughout, we employ a 
shock thickness based on the standard maximum slope criterion ; the dimensional 
thickness is denoted by 7.  The non-dimensional variations of the entropy jump, Mach 
numbers and thickness for this fluid and upstream conditions have been plotted as 
a function of strength in figure 6. In  this figure, it can be seen that the sonic condition 
is attained a t  V, x 2.44Vc. Beyond the sonic point, the discontinuities are 
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5 

FIGURE 4. Variation of entropy vs. z for three expansion shocks in PP10. Kumerical data are 
given in table 2. 

inadmissible. These inadmissible conditions are indicated by dotted lines. This series 
of shocks has a local minimum in the thickness T at  about V, = 2.2Vc,. The minimum 
is clearly evident in both figure 6 and table 2, thus providing some verification of 
results (ii) of the weak shock theory. 

The physical mechanisms leading to this minimum shock thickness are 
fundamentally different than those leading to the well-known minimum found in the 
theory of perfect gases. The latter is due to the variation of the dissipation 
parameters through the shock layer and occurs a t  shock Mach numbers in 
neighbourhood of 3. In contrast, the local minimum reported here is due to the 
approach to sonic conditions. In  fact, the minimum occurs even in numerical 
experiments that set the viscosity and thermal conductivity equal to constants. The 
local minimum was first discovered in the weak-shock theory that takes the 
dissipation parameters to be constant, a t  least to the lowest order in the perturbation 
scheme. Finally, i t  is of interest to note that the viscosities after the shock tend to 
decrease with shock strength 1 (p2 -p l ) /p l l  if the shocks are of the expansion type. 
For example, the viscosities after the three shocks depicted in figures 3-5 are 3.0,2.8, 
2.6 x lop5 kg/ms for the cases V,/Vc = 1.95, 2.15, 2.35, respectively. The upstream 
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FIGURE 5. Variation of Mach number vs. 5 for three expansion shocks in PP10. Numerical data 
are given in table 2. 

viscosity was 3.3 x kg/ms. One would therefore expect the decreases in viscosity 
to combine with the increases in strength to prevent the occurrence of the local 
minimum which is actually observed. 

The entropy variation also verifies the predictions of Cramer ( 1 9 8 7 ~ )  as well as 
those given in $5 of the present article. Although s < s1 over most of the shock layer, 
the non-dimensional entropy always becomes positive as the downstream conditions 
are approached. In table 2 it can be seen that the strongest shock crosses the r = 0 
locus (4 > 0). As predicted by the weak-shock theory, the Mach-number variation 
for this shock has a local minimum there. 

At this stage, it may be illuminating to give dimensional results for the 
thermodynamic variables. From tables 1 and 2 we find that the V, = 2.35Vc shock 
results in dimensional pressure and temperature jumps of p,-p, = - 1.5 atm. and 

= -4.0 "C. The relatively small temperature drop is to be expected because 
of the large specific heats involved. 

kg/ms. 
When this result is combined with the critical-point data recorded in table 1,  we find 
that L x 4.5 x 10-lo m for PP10. The minimum thickness for this series of runs was 

- 

It was found that the reference viscosity ,u* was approximately 1.43 x 
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FIGURE 6. Variation of upstream and downstream Mach numbers. entropy jump and thickness 
with strength along a shock adiabat. Shocks are of the expansion type ( K  > V,) in PP10. The 
upstream state and value of ,ub are identical to  those of figures 3-5. 

approximately 1269L which occurred a t  V, x 2.2V,. Thus, the minimum thickness for 
this upstream state and fluid is estimated to be 0.572 pm. If we estimate the mean 
free path a t  these temperatures using the standard hard-sphere, dilute-gas model, we 
find that this minimum shock thickness is about 33 times larger than the upstream 
mean free path. Furthermore, we expect the actual correlation lengths in the dense- 
gas regime to be considerably smaller than those based on the dilute-gas theory. 
Thus, we conclude that the results for this series of shocks are consistent with our 
continuum assumption. 

The next series of shocks are relatively large-amplitude expansion shocks, the two 
strongest of which take the flow from one side of the negative-r region to the other. 
Thus, these are of the same general type as the double sonic shocks first described by 
Thompson & Lambrakis (1973). The pertinent numerical data are found in table 3 
and the specific volume, entropy and Mach-number variations are depicted in figures 
7-9. The shock adiabat is that marked = 1.0 in figure 2. Because r changes sign 
twice across the two strongest shocks, the weak-shock theory of Cramer & Kluwick 
(1984) and Cramer ( 1 9 8 7 ~ )  is not expected to provide a qualitatively correct picture 
of the structure. Nevertheless, we again find a local minimum in the thickness and 
a negative entropy differential, i.e. s < s,, over most of the shock layer. The main new 
feature is the local maximum and local minimum in the Mach number of the 
V2 = 2.4Vc and V, = 2.6Vc shocks. A more detailed examination of the structure shows 
that these extrema occur near the r = 0 points. This appears to verify the general 
rule given in $5 of the present article, and that predicted earlier by Cramer (1987a) 
in the context of the Cramer-Kluwick approximation, which states that the Mach 
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2.2 0.8745 0.9907 -0.010 1.040 0.965 45.17 476 
2.4 0.8443 0.9892 0.101 1.047 0.975 68.20 459 
2.6 0.8146 0.9878 0.196 1.050 0.990 84.09 490 

TABLE 3. Numerical data for the expansion shocks of figures 6-8. Fluid is PP11 with 
V, = 1.35K, T, = q, p ,  = O.9944pc, p1 T,/a,  = 0.242 and p,Jp = 0.5. 
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FIGURE 7 .  Variation of specific volume 88. r for three expansion shocks in PP11. Numerical 
data are given in table 3. 

number always has an extremum near r = 0 points. Inspection of table 3 shows that 
the weakest shock involves only one sign change in r. As a result, the corresponding 
Mach number distribution in figure 9 has only the local maximum associated with the 
high-pressure r = 0 point. 

Results which were completely unanticipated are represented in the next series of 
shocks. The fluid chosen was FC-71 and the upstream state was taken to be to the 
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FIGURE 8. Variation of entropy a s .  c for three expansion shocks in PP11. Numerical data are 
given ill table 3. 

right of the negative-r region in the ( p ,  V)-diagram. The upstream state is given in 
the captions to figures 10-12 and to tablc 4. The shocks then take the flow all the way 
through the region of negative nonlinearity. The most dramatic new features are seen 
in figure 10.  As the shocks become weaker (the weakest shock is that  having V, = 

1.3V,) two additional inflexion points in the V 'us. x curves become evident. Both the 
classical weak-shock theory and that of Cramer & Kluwick (1984) can only admit one 
inflexion point in the V vs. x curve. The entropy distribution plotted in figure 11 gives 
further clues to the process. The weakening of the shock leads to a splitting of the 
single hump ordinarily associated with the entropy variation. In  fact, the weakest 
shocks appear to have undergone an internal splitting reminiscent of the shock 
splitting described by Cramer (1989~) .  We have, of course, checked the admissibility 
of this shock. The Rayleigh line was found to  lie entirely above the adiabat. Thus, 
in terms of the inviscid theory, the shock appears as a single discontinuity. The 
explanation for this phenomenon is that we are approaching the shock-splitting 
condition (where the middle of the Rayleigh line first makes contact with the 
negative r-hump of the shock adiabat) as the shock is weakened. The internal 
structure is simply anticipating the inviscid splitting. For this reason, we refer to this 
phenomenon as impending shock splitting. 



The dissipative structure of shock waves in dense gases 

t 

M - M ,  
M ,  - M ,  

b I I 

-1.5 -1.0 -0.5 0 0.5 I .o 

339 
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FIGURE 9. Variation of Mach number us. r for three expansion shocks in PP11. Numerical data 
are given in table 3. 

The phenomenon of impending shock splitting is similar to the thickening caused 
by the approach to sonic conditions in that it is primarily due to a change in 
nonlinear, rather than dissipative, effects as the admissibility limit is approached. 
We have verified that impending shock splitting also occurs even if the viscosities 
and thermal conductivity are taken to be constant. A further verification, which also 
illuminates the conditions under which impending shock splitting occurs, is described 
in the next section of the present paper. 

A second new result is seen in the Mach-number distributions plotted in figure 12. 
I n  each case, the local maximum corresponds to  a Mach number of 1.01 or larger. It 
appears that  this class of shock can have an internal layer of supersonic flow, i.e. 
there will be three, instead of one, sonic points within the shock layer. 

As the shock strength increases, the additional inflexion points in the V vs. x curves 
ultimately vanish and the entropy distribution returns to the classical single-hump 
configuration. The latter can already be seen in figure 11 although the extra inflexion 
points still appear in figure 10. 
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pz 
P C  

1.3000 1.0528 1.0088 0.8330 1.017 0.949 13.94 
1.2875 1.055 1 1.0089 0.8979 1.017 0.942 18.04 
1.2750 1.0575 1.009 1 0.9644 1.018 0.934 22.82 
1.2625 1.0599 1.0092 1.0322 1.019 0.926 28.36 
1.2500 1.0624 1.0094 1.1011 1.020 0.917 34.76 
1.2375 1.0649 1.0096 1.1707 1.021 0.907 42.10 
1.2250 1.0675 1.0097 1.2408 1.022 0.897 50.50 

TABLE 4. Numerical data  for the compression shocks of figures 10-12. Fluid is FC-71 with 
V, = 2.5K, T, = T,, p, = O.8523pc, p1 c / a l  = 0.2160 and ,LL,,/,LL = 0. 
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Variation of specific volume 'us. I for seven compression shocks in 
data  are given in table 4. 

FC-71. Numerical 

5. A weak-shock approximation 
We may gain further insight into the phenomenon of impending shock splitting by 

consideration of a weak-shock approximation. Both shock splitting and impending 
shock splitting occur only if r changes sign twice across the proposed discontinuity. 
In the following, we construct an extension of the weak-shock theory of Cramer & 
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FIGURE 11. Variation of entropy us. z for seven compression shocks in FC-71. Pu'umerical data 
are given in table 4. 

Kluwick (1984) which is capable of modelling such flows. As in the classical analysis 
of Lighthill (1956) and the work of Cramer & Kluwick (1984), Cramer ( 1 9 8 7 ~ )  and 
Lee-Bapty & Crighton (1987), a Burgers equation is first derived. The dissipative 
structure is then obtained as an exact steady-state solution. 

The model presented here takes the disturbances to be small, one-dimensional and 
unsteady, i.e. 

4 1 ) .  (5.1) 
P-Po = p = p(z,  t )  only and - 

Po 

The undisturbed state is taken to be at rest and uniform. If we further require that 

we find that the local value of r can have as many as two sign changes even though 
the disturbances are required to be small. We note that this is a natural extension of 
the classical theory 

P r O = O ( 1 ) ,  p--po= 4 1 )  
a0 Po 

and the theory of Cramer & Kluwick (1984) 

0 p-po = o( l ) ,  P i  --(po,so) a r  = O(1).  
a0 ( Po 1 a0 aP 
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FIGITRN 12. Variation of Mach number zw. x for seven rompression shocks in FC-71. Numerical 
da ta  are given in table 4. 

It is easily verified that (5.2) is valid in the vicinity of the peak of the r= 0 locus 
where the isentropes are tangent to the r = 0 curve. Although the formal range of 
validity may appear to be rather narrow, the model presented here nevertheless gives 
a good qualitative picture of the general case while preserving the simplifications 
inherent in the small-disturbance approximation. One such simplification is that the 
entropy variations due to the shock waves may be neglected for the purposes of the 
calculation of most of the flow features. In fact, it is easily verified that the entropy 
rise is of the fifth order in the shock strength ; this is found to be sufficiently small 
for the present purposes. This entropy rise is seen to be considerably smaller than 
either that found in the classical theory, where the entropy rise is of the third order, 
or that of the Cramer-Kluwick theory where the jump is of the fourth order. The 
assumption that the entropy rise is small is also borne out by the computational 
results. From table 4 it is seen that even the strongest shock corresponds to an 
entropy rise of only 5 x tW4R. 

With such a small entropy risc, it is natural to expect that reflected waves caused 
by variations in the shock strength are also negligible. For the purposes of 
constructing the Burgers equation we will assume that this is the case. However, this 
is not formally necessary for the analysis of the dissipative structure which can be 
carried out in the context of shocks of constant strength. With the neglect of reflected 
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waves we may take the disturbances to be right-moving simple waves having a local 
convected sound speed given by 

(5.3) 

where w is the particle velocity and primes denote an arbitrary reference state. 
Result (5 .3)  was given by Cramer & Sen (1986) although an equivalent form is found 
in the earlier work of Thompson & Lambrakis (1973). We note that (5.3) is strictly 
valid only if the flow is inviscid. Dissipative effects will be considered once the 
nonlinearity is properly taken into account. If the assumptions (5.1) and (5.2) are 
applied to (5.3), we find that the local convected sound speed may be approximated 

where the reference state was taken to be the stationary and uniform undisturbed 
state, i.e. w‘ = 0, p’ = po, s’ = so, and 

(5 .5)  

We note that A is just the second nonlinearity coefficient introduced by Cramer & 
Kluwick (1984). In  deriving (5.4) from (5.3) a Taylor series for T ( p ,  s) was employed. 
The fact that the entropy rise is of the fifth order in (p-po)  was also used. Because 
of (5.2) the terms proportional to p o ~ / a o ,  A ,  and E in (5.4) are all of order 
( ( ~ - p ~ ) / p ~ ) ~ ;  thus, each must be included in the lowest-order nonlinear theory. An 
inviscid Burgers equation corresponding to (5.4) is 

-- a P-Po a P-Po 
at( Po )+“(p)&-) =(A (5.6) 

where a(p)  is given by (5.4). Application of the method of characteristics to (5.6) 
verifies that  

(5.7) 
dx 
dt 

p = constant on lines - = 0). 

Dissipative effects may be taken into account in the same manner as in the 
classical theory and the Cramer-Kluwick theory. Here we assume that the spatial 
lengthscales are such that the dissipative terms are in a rough balance with the 
nonlinear terms. More precisely we take 

where 1 is some measure of the lengthscale of the disturbance. In  effect, (5.8) requires 
that the wave Reynolds number lpoao/po is of the order of the inverse third power 
of the non-dimensional disturbance amplitude. The dissipative form of (5.6) may 
then be written 

(5.9) 

where (5.10) 
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is a form of the acoustic diflusivity, Pr is the Prandtl number and y is the ratio of 
specific heats. Because k, p, pb,  c p ,  y-  1 > 0, it may be shown that 6 > 0. 

Equation (5.9) may be used to examine the evolution of arbitrary disturbances in 
a manner similar to the classical theory or the theory of Cramer & Kluwick (1984). 
As indicated earlier in this section, we shall focus our attention on shock-like 
solutions. We first transform to a coordinate system moving with a constant shock 
speed 9. I n  such a system, (5.9) may be rewritten as 

where 

(5.11) 

(5.12) 

and E is a small parameter measuring the maximum amplitude of the density 
perturbation. The structure is obtained by taking the flow to be steady, i.e. 
au/at = 0, in (5.11) and by requiring that u satisfies 

(5.13) 

which are seen to be the analogues of (2.3). The equation governing the shock 
structure therefore reads 

+Aii = ( Q ' - d ) z i ,  (5.14) 

where dots denote differentiation with respect to a scaled 6 defined by 

The quantity 4 is a non-dimensional measure of the shock speed defined by 

The quantity Q = Q(u) is defined 

Q = aru2 + ; A 3  + &EU~ 

so that  

where 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

Throughout we have noted that (5.13) introduces no natural geometric lengthscale 
and have therefore set 

1 G O  P 
a. e3po ' 

so that (5.20) 

The function Q(u) is closely related to the shock adiabat or, because the entropy 
variations are so small, the isentropes. A typical &-curve is sketched in figure 13 for 
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FIGURE 13. Sketch of a typical &-curve and solutions to (5.25) or (5.26) for upstream and 
downstream states given by u1 and u,, respectively. At u = ul, u,, ub, and u,, the right-hand side 
of (5.26) vanishes. 

an undisturbed state which is somewhat to the right of the r = 0 locus in the (p ,  V ) -  
diagram. As indicated by (5.18), the slope of this curve, i.e. Q', is simply a scaled 
version of the convected sound speed. If we differentiate (5.18), we find that the 
second derivative is just 

&" = l'+iU+%EUZ (5.21) 

which can be shown to be a scaled version of the local value of the fundamental 
derivative. This could have been anticipated from (5.3). Thus, r < 0 where the 
curvature of the Q-curve is downward (Q" < 0) and r > 0 where Q" > 0. 

The shock speed rl is dete;mined by consideration of the first integral of (5.14). 
Integration with respect to 5 and application of (5.13) yields 

(5.22) 

as the expression for the shock speed. The original structure equation (5.14) and its 
first integral therefore reads 

(5.23) 

(5.24) 
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I n  the exact theory of shock waves, the analogue of (5.22) is just (2.6). That is, the 
shock speed is proportional to (in the wcak-shock theory it is equal to) the slope of 
the Rayleigh line connecting the upstream and downstream states. (Here we shall 
refer to straight lines in the (Q,u)-planc as Rayleigh lines owing their close 
relationship to those introduced previously.) Furthermore, (5.24) is recognized as the 
weak-shock analogue of the original system (2.1). 

The general features of the dissipative structure are easily deduced by inspection 
of (5.13), (5.22)-(5.24). From (5.24) it is clear that  z i + O  whenever 

Q-Q, - [Ql 
4-u, [u]' 

(5.25) 

where Q = Q(4). The solutions Zi to (5 .25)  can be shown to be the values of u at which 
the Rayleigh line connecting (ul,Q1) to (u2 ,Q2)  intersects the Q vs. u curve. We 
therefore obtain the analogue of the general existence condition stated in $2. This 
may be stated as follows : smooth solutions to (5.23) or (5.24) exist if and only if the 
straight line connecting u1 to u2 lies entirely above or below the Q vs. u curve between 
u1 and u2. Typical inadmissible discontinuities are represented by figure 13 where the 
resultant singular solutions are also sketched. The intermediate intersections are at 
u, and ub in this figure. If no intermediate intersections occur, the proposed 
transition is smooth, i.e. acceptable, and the direction of the jump is determined by 
requiring the satisfaction of (5.13). 

The distinguishing feature of impending shock splitting will be the occurrence of 
multiple inflexion points in the u vs. 6 curve. Inspection of (5.23) shows that an 
inflexion point will occur at values of u where the slope of the straight line connecting 
the upstream and downstream states is parallel to the Q us. u curve. It is easily 
verifiefl that  most admissible shocks therefore have only one inflexion point in the 
u vs. 6 distribution. However, multiple solutions to 

-- '" - Q'(u) 
[ul 

(5.26) 

are possible for a range of admissible compression shocks which take the flow from 
one side of the r < 0 region to  the other. In figure 14 the downstream state of these 
shocks is between u, and ub. For this range of shock strengths, there will be three" 
points at which (5.26) is satisfied and therefore three inflexion points in the u vs. E 
curve even though the shock appears as a single discontinuity from the point of view 
of the inviscid theory. The state denoted by b is such that the slope of the Rayleigh 
line from state 1 to b is parallel to the slope of the Q-curve at the left-most inflexion 
point i', i.e. 

MI = Q'(Ui,) .  
[ul U , + U b  

Note that Q'(uir) > Q'(u,.) for all values o f f ,  A ,  E leading to shock splitting. Stronger 
shocks having u2 > ub have only one solution to (5.26) and therefore only one 
inflexion point. Thus, away from the neighbourhood of the shock-splitting condition, 
the structure appears similar to the classical case. The state denoted by a is the 
weakest admissible shock that can take t,he flow from one side of the r < 0 region to 
the other. Downstream conditions below the lower limit (u,) will result in an 
intermediate intersection and therefore will be inadmissible. Inadmissible dis- 
continuities having ui" < up < u, will result in shock splitting. These observations are 
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Ordinary shock 
structure w 

u-u,  
u;- u,  

FIQURE 14. Sketch to  illustrate conditions for impending shock splitting. The u V.S. d curve has 
inflexion points at values of u1 < u < u2 whenever the tangent to the Q us. u curve is parallel to the 
Rayleigh line between ( u ~ ,  Q,) and (u2, Q2). 

in complete accord with the numerical calculations and we therefore conclude that 
the density distributions illustrated in figure 10 can be anticipated through use of the 
present weak-shock model. 

The entropy distribution can also be shown to be in agreement with the 
computations presented in $4. If the energy equation is cast in terms of the entropy, 
s ,  we find that 

(5.27) 

is the exact equation for the entropy distribution in the shock. If we make the 
assumption that the flow is steady in the reference frame moving with the shock and 
make the weak-shock approximation we find that (5.27) can be approximated by 

(5.28) 

where dots again denote differentiation with respect to g and p is the coefficient of 
thermal expansivity defined by 

12 FLM 223 
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Throughout we shall take P > 0. Integration and use of (5.13) yields 
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€4 S--s1--- - u. 
P o  4 Pro 

(5.29) 

Thus,” the entropy has a local maximum or minimum at  each inflexion point of the 
u us. 6 curve. The entropy distribution will have two maxima and one local minimum 
when impending shock splitting occurs ; this is in qualitative agreement with the 
results presented in $4. The result (5.29) is essentially the same as that employed by 
Cramer (1987 a). We may also conclude that all admissible expansion shocks have a 
local minimum, rather than maximum, in the entropy distribution, a t  least in the 
context of this weak-shock theory. 

I n  the frame moving with the shock, the exact expression for the Mach number M 
is 

(5.30) 

where (T = a(p)  is given by (5.3). If we approximate a and 9’ using (5.16), (5.18) and 
(5.22) and note that a may be approximated as a,, we find that (5.30) can be written 

M-1 z E~(o-&’(u)) = c3 --Q’(u) . (5.31) t:; 1 
If we differentiate (5.31) with respect to u we find that 

(5.32) 

By combining (5.32) with (5.21) it can be shown that M has a local maximum or 
minimum whenever the local value of rchanges sign. This agrees with result (ii) from 
the Cramer-Kluwick theory and is in qualitative agreement with the finite- 
amplitude results reported in $4 of the present article. 

Equation (5.31) may also be employed to show that any acceptable shock, i.e. any 
discontinuity having a smooth structure satisfying (5.23) and (5.13), takes the flow 
from supersonic to subsonic conditions as measured in a frame where the shock 
appears stationary. 

Finally, we note that (5.31) may be combined with (5.23) to show that 

u 
M-1 = -pda3:. 

U 

Thus, the flow is sonic a t  each inflexion point in the u us. ( curve. In  the case of 
impending shock splitting there will be three sonic points. Because the flow is 
necessarily supersonic upstream of the shock and subsonic downstream, we conclude 
that there will always be an embedded region of supersonic flow in any shock layer 
corresponding to impending shock splitting. Just  such an embedded region was 
found in the numerical computations described in $4. 

To conclude this syti9n, we note _that (5.24) can be integrated todoobtain 
explicit solutions for 5 = ( (u ;u l ,uz , r ,A,E) .  If we factor (5.24) and take ( = 0 at 
u = i(ul + uz), we find that 

(5.33) 
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(5.34) 

The significance of the quadratic u2 +a, u+a2 is that its zero yields the other two 
roots of (5.25) ; these read 

U f  = - - 1  p, k (;a; - a,)+, (5.35) 

provided a: > 401,. Examples of such additional roots are points (u,, Q,) and (ub, Qb) 
in figure 13. Note that there are only two intersections of the Rayleigh line and the 
Q-curve in figure 14. Thus, at < 4a2 for this (ul,u2) pair. Upon integration of (5.33) 
we find 

provided that 401, > a; and 

(u - u+) (u - u-) 
124 

u-u+~(u,+u,)-u- + 
u-u- ;(u1+u2)-u+ ' } (5.37) 

1 + - (B3 -B2 +a,) In 
B5 

if a: > 4a2, where u* are given by (5.35) and 

u; + a1 u1 + a2 B, = 
B6 

01, + u1 + u2 

B6 
B2 = (u2 - u1) 1 

a1 u2 + u1 u2 -a2 + a; +u, 01, 
B3 = (u2-u1) 3 

B6 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

In the first case, i.e. 4a2 > a:, the only singularities in 6 are at u = u1 or u2. In the 
second case, the intermediate singularities depicted in figure 13 occur if either u+ or 
u- fall between u1 and u2. 

The two solutions (5.36) and (5.37) are rendered invalid if any one of the following 
conditions holds : 

B6 = 0, (5.44) 

B, or B 5 = 0 ,  (5.45) 

U f  = i(u, +u2). (5.46) 
12-2 
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u-u ,  
u, - u, 
~ 

FIGURE 15. Variation of u us. 6 according to the weak-shock approximation. The upstream 
c_onditiop are on the right. The nonlinearity parameters and upstream value of u, were taken as 
r = 1 , n = - 2 , g = i . 6 5 , u 1 = o .  

The last condition holds only if U+ or u- lies between u1 and u2; this, of course, does 
not occur in admissible shocks. The significance of condition (5.44) is seen by noting 
that B, may be rewritten as 

B, = (u2-u1)(u1-u+)(u1-u-)(u2-u+)(u2-u-) 

if at > 4a,. Thus, for u1 + u2, condition (5.44) holds only if one or the other 
intersection point u* merges with either the upstream or downstream conditions. It 
is easily verified that this is a tangency, i.e. sonic, point. It may also be shown that 
the approach to  the sonic asymptote is algebraic rather than exponential; this, of 
course, is completely consistent with the more limited theory of Cramer & Kluwick 
(1984), Cramer ( 1 9 8 7 ~ )  and Lee-Bapty & Crighton (1987). Substitution of condition 
(5.45) in (5.35) shows that 

u+ = u- = --ItL. 

when either of (5.45) are satisfied. In this case the shock between u1 and u2 is non- 
sonic but the Rayleigh line turns out to be tangent to the &-curve a t  u = -hl. If 
-;a, lies between u1 and u2, this is the condition for shock splitting; an example of 

2 1  
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FIGURE 16. Variation of entropy vs. 6 according to the weak shock approximation. The upstream 
cpnditions are on the right. The nonlinearity parameters and upstream value of u1 were taken as 

~ 

f =  1, A = - 2 ,  E =  1.65, u1 = 0. 

this case is point s in figure 14. The solution to (5.45) is equivalent to the equation 
a; = +a,-which yields a quadratic for the shock strength u2-u1 in terms of u1 (or 
u2) ,  r, A ,  E. There are two real solutions to the quadratic provided that 

A-2 A- f 
16--4,u1-2u? > 36,. 

Y 
r z  
Y 

It is a straightforward exercise to derive the limiting form of (5.36)-(5.42) when 
(5.45) holds. The main modification is to the last term in (5.36) and (5.37). The 
limiting form of this term is found to  be 

1 1 
(B3 -hl B 2 )  { (5.47) 

where B,,  B3,  and a, are all evaluated at the appropriate value of u,. If U +  = u- 
= -+a, are not between u1 and u,, the above term is bounded for all u be$ween u1 
and u2 and the solution is smooth. However, i t  is clear from (5.47) that 161 + 00 as 
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~ 

12A1 

FIGURE 17. Variation of Mach number vs. 6 according to the weak shock approximation. The 
upstream Zonditiqns are on the right. The nonlinearity parameters and upstream value of u1 were 
t a k e n a s r = l ,  A = - - 2 , 3 = 1 . 6 5 , ~ , = 0 .  

u+-+al when u+ = u- = -;al is between u1 and u2. In  terms of figure 14, this 
internal singularity occurs as u + us. This, of course, is just the shock-splitting 
condition and could have been anticipated directly from our analysis of (5.24). Thus, 
as shock splitting is approached, the slope of the u us. [ curve a t  the middle inflexion 
point becomes horizontal and the shock thickness becomes infinite. 

The density, entropy and Mach-number distributions for conditions corresponding 
to impending shock splitting are plotted in figures 15-17. The undisturbed state was 
chosen to be on the low-density side of the r < 0 region; this, of course, is similar to 
the upstream state of figures 10-12. For these values of ul, I', I , S ,  impending shock 
splitting corresponds to  values of u2 between 2.48 and 2.83, approximately. Thus, the 
four weakest shocks give rise to impending shock splitting whereas the strongest 
shock is similar to that of the classical theory. These results are seen to be in complete 
agreement with the more general deductions of this section and are also in excellent 
qualitative agreement with the numerical results for finite-strength waves presented 
in $4. 
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6. Conclusions 
The main objective of this study was to provide detailed descriptions of the 

dissipative structure of finite-amplitude shocks in single-phase fluids which have 
large specific heats. Particular attention is paid to the dense-gas regime. The 
standard continuum model is employed with state-of-the-art models for the equation 
of state and density dependencies of the shear viscosity and thermal conductivity. 

Our computations confirm the existence of a reasonable internal structure for 
expansion shocks having pressure drops of over 2.5 atm. These computations also 
serve to verify the predictions of previous investigators. In  particular, it appears that 
the local value of the entropy will attain a local minimum in the interior of expansion 
shocks ; this contrasts sharply with the variation in compression shocks. The 
prediction that the Mach number no longer decreases monotonically has been 
verified; as predicted, the local Mach number has a maximum or minimum near the 
point where the local value of r changes sign. The prediction of a local minimum in 
the shock thickness with respect to strength is also verified. Evidence of this local 
minimum can be seen in figure 6 and tables 2 and 3. This local minimum is expected 
to occur when the sonic shock is the shock of maximum, rather than minimum, 
strength. I n  turn, the sonic limit is only possible when r changes sign ; thus, the local 
minimum in thickness only occurs in cases of mixed nonlinearity. As discussed by 
Cramer (1987a), the physical effects leading to this phenomenon are the weakening 
of the local nonlinearity as the sonic condition is approached inside the shock layer 
rather than the well-known effects of viscosity variation. 

A new phenomenon not anticipated in previous investigations is impending shock 
splitting. This phenomenon is expected to occur in compression shocks which take 
the flow from one side of the r < 0 region to the other. Both our numerical studies 
of the full equations and the extended weak-shock approximation developed in $5 
indicate that impending shock splitting will always occur as the shock-splitting 
condition is approached. I n  the weak-shock approximation of $5  the inflexion points 
in the density distribution and the local maximum and minimum in the entropy 
distribution occur where the Rayleigh line is parallel to the shock adiabat (this is the 
&-curve of figures 13 and 14). In  terms of the (p, V)-diagram, admissible compression 
shocks which take the flow from one side of the r < 0 region to the other are expected 
to  exhibit impending shock splitting if 

where dp/dV denotes the slope of the shock adiabat, the subscript i’ denotes the low- 
density zero of r and (b]/[ Vl) lSs denotes the slope of the Rayleigh line corresponding 
to shock splitting. Although this criterion was derived on the basis of the weak-shock 
approximation, i t  appears to give reasonable guidance for the exact problem. 

A new feature which is also unique to impending shock splitting is the existence 
of an internal layer of supersonic flow. This again appeared in both numerical and 
analytical approaches. 

Although the novel phenomena presented here are of interest in their own right, 
we feel these results can have a broader relevance. Perhaps the most important 
consideration is that  many numerical schemes for inviscid flow have either numerical 
viscosity or deliberately incorporate artificial viscosity. To the exbent that  these 
viscosities mimic Navier-Stokes viscosity and heat conduction, such numerical 
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schemes will generate results similar to those presented here. For example, if a shock- 
capturing scheme is used to compute the supersonic flow of a BZT fluid, numerically 
generated impending shock splitting could be mistaken for inviscid splitting. 
Without the background provided here, it is a t  least conceivable that the non- 
monotone character of the Mach number or the negative entropy humps could also 
be misinterpreted. It should also be noted that the maximum-slope criterion for the 
shock thickness is no longer useful when impending shock splitting occurs ; this is due 
to the appearance of additional inflexion points. A condition based on the percentage 
of the transition would be a better choice. 

The seeds of the idea for the approximation of $5  were planted many years ago in 
conversations with Professor A. Kluwick. The first author would like to take this 
opportunity to acknowledge the many direct and indirect contributions of Professor 
Kluwick to this and related work. 
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